
Properties of relations on a set determined by a matrix

Mr Ashlin Darius Govindasamy
University of South Africa

Department of Computer Science and Mathematics

October 23, 2024

Abstract

This paper introduces a technique of converting a relation set into a matrix of Rn space using that
matrix classifying the properties for the relational set. Using this technique, we can find the properties
of a relation set by using some properties of the matrix. In programming, we can use this technique
to determine our properties of a relation set by using the matrix. Code snippets are provided to show
how this technique can be used in programming.

Contents

1 Relations 2
1.0.1 What is a relation? . 2

1.0.1.1 Some specific relations . 2
1.0.2 Properties of relations . 3

1.0.2.1 Reflexive . 3
1.0.2.2 Irreflexive . 4
1.0.2.3 Symmetric . 5
1.0.2.4 Antisymmetric . 6
1.0.2.5 Transitive . 6
1.0.2.6 Trichotomy . 7
1.0.2.7 Equivalence relations . 8
1.0.2.8 Order relations . 8

2 Computer Program 9
2.1 Python Class . 9

1

Chapter 1

Relations

1.0.1 What is a relation?

A (binary) relation R between sets A and B is a subset of A×B. (A×B is a Cartesian product.)
Thus, a relation is a set of pairs.
The interpretation of this subset is that it contains all the pairs for which the relation is true. We

write aRb if the relation is true for A and B (equivalently B, if (A,B) ∈ R).
A and B can be the same set, in which case the relation is said to be ”on” rather than ”between”:
A binary relation R on a set A is a ⊆ A×A. (A×A is a Cartesian product.)

Example of a relation using A = {0, 1, 2, 3}

R = {(0, 0), (1, 1), (2, 2), (3, 3)}

Relations may also be of other arities. An n-ary relation R between sets X1, ... , and Xn ⊆ n-ary
product X1...Xn, in which case R is a set of n-tuples.

1.0.1.1 Some specific relations

The empty relation between sets X and Y, or on E, is the empty set ∅.
The empty relation is false for all pairs.
The full relation (or universal relation) between sets X and Y is the set X×Y.
The full relation on set E is the set E×E.
The full relation is true for all pairs.
The identity relation on set E is the set (x, x)|x ∈ E.
The identity relation is true for all pairs whose first and second element are identical.

2

1.0.2 Properties of relations

A relation R is.. if ...
reflexive xRx
symmetric xRy implies yRx
transitive xRy and yRz implies xRz
irreflexive xRy implies x̸=y
antisymmetric xRy and yRx implies x=y
triohotomy xRy or x=y or yRx

1.0.2.1 Reflexive

Let Relation R on A
Where R ⊆ A×A

The reflexive property of a relation is that ∀a ∈ A, aRa is true.
Also could be written as R ⊆ A×A and ∀a ∈ A, then (a, a) ∈ R
Example:
Let A = {1, 2, 3, 4}

Let R = {(1, 1), (2, 2), (2, 3), (3, 4), (3, 3), (4, 4), (4, 2)}

We could draw a matrix to show the relation R on A

To draw the matrix we plot the elements of A on the x-axis and y-axis.
Then we plot the pairs of R on the matrix as 1.
If the pair is not in R then we plot a 0.

1 2 3 4
1 1 0 0 0
2 0 1 1 0
3 0 0 1 1
4 0 1 0 1

We can also draw a directional graph to show the relation R on A
We plot the elements of A as nodes.
We plot the pairs of R as directed edges.

1 2

3 4

Thus resulting in the relation R being reflexive.
This is because for all a ∈ A, aRa is true.
For example, 1R1 is true, 2R2 is true, 3R3 is true, 4R4 is true.
Therefore R is reflexive.

3

In the matrix, we can see that the diagonal is all 1’s.
If you notice, the diagonal is the pairs (a, a) for all a ∈ A.
In programming we look at this problem as a 2D array.

Using Mathematics logic, we can write this as:
R ⊆ A×A and ∀a ∈ A, then (a, a) ∈ R

Where R is a 2D array.

Or in psuedocode:

f unc t i on i sR e f l e x i v e (R)
bValid = True
f o r i = 0 to R. l ength

f o r j = 0 to R. l ength
i f R[i] [j] = 0

bValid = False
end i f

end f o r
end f o r
re turn bValid

1.0.2.2 Irreflexive

Let Relation R on A
Where R ⊆ A×A

The irreflexive property of a relation is that ∀a ∈ A, aRa is false.
Also could be written as R ⊆ A×A and ∀a ∈ A, then (a, a) /∈ R
Example:
Let A = {1, 2, 3, 4}

Let R = {(1, 2), (2, 3), (3, 4), (4, 1)}
We could draw a matrix to show the relation R on A
To draw the matrix we plot the elements of A on the x-axis and y-axis.
Then we plot the pairs of R on the matrix as 1.
If the pair is not in R then we plot a 0.

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0

We can also draw a directional graph to show the relation R on A
We plot the elements of A as nodes.
We plot the pairs of R as directed edges.

1 2

3 4

Thus resulting in the relation R being irreflexive.
This is because for all a ∈ A, aRa is false.
For example, 1R1 is false, 2R2 is false, 3R3 is false, 4R4 is false.
Therefore R is irreflexive.
In the matrix, we can see that the diagonal is all 0’s.
If you notice, the diagonal is the pairs (a, a) for all a ∈ A.
In programming we look at this problem as a 2D array.

4

Using Mathematics logic, we can write this as:
R ⊆ A×A and ∀a ∈ A, then (a, a) /∈ R
Where R is a 2D array.
Or in psuedocode:

de f i s I r r e f l e x i v e (s e l f) :
f o r i in range (l en (s e l f .M)) :

i f s e l f .M[i] [i] == 1 :
re turn Fal se

re turn True

1.0.2.3 Symmetric

Let Relation R on A be symmetric if ∀a, b ∈ A then (a, b) ∈ R (b, a) ∈ R

Example: R = (1, 1), (1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)
We can draw a matrix to show the relation R on A
To draw the matrix we plot the elements of A on the x-axis and y-axis.
Then we plot the pairs of R on the matrix as 1.
If the pair is not in R then we plot a 0.

1 2 3 4
1 1 0 1 0
2 0 0 1 1
3 1 1 0 0
4 0 1 0 0

We can also draw a directional graph to show the relation R on A
We plot the elements of A as nodes.
We plot the pairs of R as directed edges.

1 2

3 4

Notice that the relation R is symmetric.
This is because for all a, b ∈ A, aRb is true.
aRb is true if and only if bRa is true.
For example, 1R1 is true, 1R3 is true, 2R3 is true, 2R4 is true, 3R1 is true, 3R2 is true, 4R2 is true.
Therefore R is symmetric.
In the matrix, we can see that the matrix is symmetric.

Using our knowledge of matrices, we can write this as:
R ⊆ A×A and R = RT

Where R is a 2D array.

Remember that RT is the transpose of R.
The transpose of a matrix is the matrix found by interchanging its rows into columns or columns into
rows.
In programming we look at this problem as a 2D array.

func t i on isSymmetric (R)
RT = transpose (R)
return R == RT

5

end func t i on

1.0.2.4 Antisymmetric

Let Relation R on A be antisymmetric if ∀a, b ∈ A then (a, b) ∈ R (b, a) ∈ R
Or in psuedocode:

f unc t i on isAnt isymmetr ic (R)
bSymmetric = isSymmetric (R)
i f bSymmetric == True

return Fal se
e l s e

re turn True
end i f

end func t i on

1.0.2.5 Transitive

A relation R on A is transitive if ∀a, b, c ∈ A then (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R

Example: R = (1, 1), (1, 3), (2, 3), (2, 4), (3, 1), (3, 2), (4, 2)
We can draw a matrix to show the relation R on A
To draw the matrix we plot the elements of A on the x-axis and y-axis.
Then we plot the pairs of R on the matrix as 1.
If the pair is not in R then we plot a 0.

1 2 3 4
1 1 0 1 0
2 0 0 1 1
3 1 1 0 0
4 0 1 0 0

We can also draw a directional graph to show the relation R on A
We plot the elements of A as nodes.
We plot the pairs of R as directed edges.

1 2

3 4

For this problem we calculate the Mk where each element identifies the number of paths of length.
So for example M2 is the number of paths of length 2.
M2 = M ·M

M =

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

M2 =

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 ·

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

M2 =

1 · 1 + 0 · 0 + 1 · 1 + 0 · 0 1 · 0 + 0 · 0 + 1 · 1 + 0 · 1 1 · 1 + 0 · 1 + 1 · 0 + 0 · 0 1 · 0 + 0 · 1 + 1 · 0 + 0 · 0
0 · 1 + 0 · 0 + 1 · 1 + 1 · 1 0 · 0 + 0 · 0 + 1 · 1 + 1 · 1 0 · 1 + 0 · 1 + 1 · 0 + 1 · 0 0 · 0 + 0 · 1 + 1 · 0 + 1 · 0
1 · 1 + 1 · 0 + 0 · 1 + 0 · 0 1 · 0 + 1 · 0 + 0 · 1 + 0 · 1 1 · 1 + 1 · 1 + 0 · 0 + 0 · 0 1 · 0 + 1 · 1 + 0 · 0 + 0 · 0
0 · 1 + 1 · 0 + 0 · 1 + 0 · 0 0 · 0 + 1 · 0 + 0 · 1 + 0 · 1 0 · 1 + 1 · 1 + 0 · 0 + 0 · 0 0 · 0 + 1 · 1 + 0 · 0 + 0 · 0

6

M2 =

2 1 2 0
0 0 2 2
2 2 0 0
0 2 0 0

Looking at our psuedocode code.

de f i sT r a n s i t i v e (s e l f) :
M = s e l f .M
Msquare = np . dot (M, M)
f o r i in range (l en (M)) :

f o r j in range (l en (M)) :
i f Msquare [i] [j] == 1 :

i f M[i] [j] == 0 :
re turn Fal se

re turn True

1.0.2.6 Trichotomy

In mathematics, the law of trichotomy states that every real number is either positive, negative, or
zero.

More generally, a binary relation R on a set X is trichotomous if for all x and y in X, exactly one
of xRy, yRx and x=y holds. Writing R as <, this is stated in formal logic as:

∀x ∈ X ∀y ∈ X ([x < y ∧ ¬(y < x) ∧ ¬(x = y)] ∨ [¬(x < y) ∧ y < x ∧ ¬(x = y)] ∨ [¬(x <
y) ∧ ¬(y < x) ∧ x = y])

A relation is trichotomous if, and only if, it is asymmetric and connected. If a trichotomous relation
is also transitive, then it is a strict total order; this is a special case of a strict weak order.

In a much easier to understand way.
For example, the relation R on A is trichotomous.

R = (1, 1), (1, 2), (1, 3), (2, 3)

R =

1 1 1
0 0 1
0 0 0

1 2

3

If you notice the relation is trichotomous the relation R is asymmetric and edges are connected
only once.

In our psuedocode we can see that we are checking if the relation is trichotomous.

de f isTrichotomy (s e l f) :
f o r i in range (l en (s e l f .M)) :

f o r j in range (l en (s e l f .M)) :
i f i != j :

i f s e l f .M[i] [j] == 0 and s e l f .M[j] [i] == 0 :
re turn Fal se

re turn True

7

1.0.2.7 Equivalence relations

An equivalence relation is a relation that is reflexive, symmetric, and transitive.
An equivalence relation partitions its domain E into disjoint equivalence classes. Each equivalence
class contains a set of elements of E that are equivalent to each other, and all elements of E equivalent
to any element of the equivalence class are members of the equivalence class. The equivalence classes
are disjoint: there is no x∈ E such that x is in more than one equivalence class. The equivalence classes
exhaust E: there is no x∈ E such that x is in no equivalence class. Any element of an equivalence class
may be its representative; the representative stands for all the members of its equivalence class.

1.0.2.8 Order relations

An order (or partial order) is a relation that is antisymmetric and transitive.
A strict order is one that is irreflexive and transitive; such an order is also trivially antisym-

metric because there is no x and y such that xRy and yRx.
A non-strict (weak) order is one that is reflexive, antisymmetric, and transitive.

An order relation R on E is a total order if either xRy or yRx ∀x,y∈ E.
An order relation R on E is a partial order if there is a x,y∈ E for which neither xRy nor yRx.
And order relation R on E is a Triohotomy if either xRy, yRx, or x=y ∀x,y∈ E.
A weak total order is reflexive, antisymmetric, transitive and trichotomy.

A strict total order is irreflexive, transitive, and trichotomy.

8

Chapter 2

Computer Program

2.1 Python Class

Using all of our knowledge of matrices and relations, we can create a class that can be used to determine
the properties of a relation set. This class can be used to determine the properties of a relation set by
using the matrix.

I will use the following relation set as an example:

R = {(∅, {a}), (∅, {b}), (∅, {a, b}), ({a}, {b}), ({a}, {a, b}), ({b}, {a, b})}

The class is shown below:

import numpy as np

c l a s s Re la t i on s () :
de f i n i t (s e l f , s , R) :

s e l f . s = s
s e l f .R = R
s e l f .M = np . z e r o s ((l en (s) , l en (s)))
f o r i in R:

s e l f .M[i [0] =1] [i [1] =1] = 1

de f returnMatr ix (s e l f) :
r e turn s e l f .M

de f i sR e f l e x i v e (s e l f) :
f o r i in range (l en (s e l f .M)) :

i f s e l f .M[i] [i] == 0 :
re turn Fa l se

re turn True

de f i s I r r e f l e x i v e (s e l f) :
f o r i in range (l en (s e l f .M)) :

i f s e l f .M[i] [i] == 1 :
re turn Fa l se

re turn True

de f isSymmetric (s e l f) :
T = s e l f .M. t ranspose ()
i f np . a r r ay equa l (T, s e l f .M) :

r e turn True
re turn Fa l se

de f i sAnt isymmetr ic (s e l f) :
i f s e l f . i sSymmetric () :

r e turn Fa l se
re turn True

de f i sT r a n s i t i v e (s e l f) :
M = s e l f .M
Msquare = np . dot (M, M)

9

f o r i in range (l en (M)) :
f o r j in range (l en (M)) :

i f Msquare [i] [j] == 1 :
i f M[i] [j] == 0 :

re turn Fa l se
re turn True

de f isTrichotomy (s e l f) :
f o r i in range (l en (s e l f .M)) :

f o r j in range (l en (s e l f .M)) :
i f i != j :

i f s e l f .M[i] [j] == 0 and s e l f .M[j] [i] == 0 :
re turn Fa l se

re turn True

de f Equ iva l enceRe lat ion (s e l f) :
i f s e l f . i s R e f l e x i v e () and s e l f . isSymmetric () and s e l f . i sT r a n s i t i v e () :

r e turn True
re turn Fa l se

de f WeakPartialOrder (s e l f) :
i f s e l f . i s R e f l e x i v e () and s e l f . i sT r a n s i t i v e () and s e l f . i sAnt isymmetr ic () :

r e turn True
re turn Fa l se

de f S t r i c tPa r t i a lO rd e r (s e l f) :
i f s e l f . i sT r a n s i t i v e () and s e l f . i sAnt isymmetr ic () and s e l f . i s I r r e f l e x i v e ()

:
r e turn True

re turn Fa l se

de f WeakTotalOrder (s e l f) :
i f s e l f . i s R e f l e x i v e () and s e l f . i sT r a n s i t i v e () and s e l f . i sTrichotomy () :

r e turn True
re turn Fa l se

de f S t r i c tTota lOrder (s e l f) :
i f s e l f . i sT r a n s i t i v e () and s e l f . i sTrichotomy () and s e l f . i s I r r e f l e x i v e () :

r e turn True
re turn Fa l se

de f S t r i c tEqu iva l en c eRe l a t i on (s e l f) :
i f s e l f . Equ iva l enceRe lat ion () and s e l f . i s I r r e f l e x i v e () :

r e turn True
re turn Fa l se

de f p r i n tPrope r t i e sO fRe l a t i on (s e l f) :
pr in t only the p r op e r t i e s that are t rue
i f s e l f . i s R e f l e x i v e () :

p r i n t (” Re f l e x i v e ”)
i f s e l f . i s I r r e f l e x i v e () :

p r i n t (” I r r e f l e x i v e ”)
i f s e l f . i sSymmetric () :

p r i n t (”Symmetric”)
i f s e l f . i sAnt isymmetr ic () :

p r i n t (”Antisymmetric ”)
i f s e l f . i sT r a n s i t i v e () :

p r i n t (” Tran s i t i v e ”)
i f s e l f . i sTrichotomy () :

p r i n t (”Trichotomy”)
i f s e l f . Equ iva l enceRe lat ion () :

p r i n t (”Equivalence Re lat ion ”)
i f s e l f . S t r i c tEqu iva l en c eRe l a t i on () :

p r i n t (” S t r i c t Equivalence Re lat ion ”)
i f s e l f . WeakPartialOrder () :

p r i n t (”Weak Pa r t i a l Order”)
i f s e l f . S t r i c tPa r t i a lO rd e r () :

p r i n t (” S t r i c t Pa r t i a l Order”)
i f s e l f . WeakTotalOrder () :

p r i n t (”Weak Total Order”)

10

i f s e l f . S t r i c tTota lOrder () :
p r i n t (” S t r i c t Total Order”)

Using s e t
#s = {0 , a , b , ab}
#R = { (0 ,{ a }) , (0 ,{b}) , (0 ,{ a , b}) , ({ a } ,{b}) , ({ a } ,{a , b}) , ({b} ,{a , b}) }

s in c e our c l a s s uses numerica l va lues , we need to convert the s e t to a l i s t o f
numbers and tup l e s o f ordered pa i r s

s = [1 , 2 , 3 , 4]
0 a b ab
R = [(1 , 2) , (1 , 3) , (1 , 4) , (2 , 3) , (2 , 4) , (3 , 4)]
r1 = Re la t i ons (s , R)
r1 . p r i n tPrope r t i e sO fRe l a t i on ()

Output
#I r r e f l e x i v e
#Antisymmetric
#Trans i t i v e
#Trichotomy
#S t r i c t Pa r t i a l Order
#S t r i c t Total Order

Graphing the relation as a matrix

R =

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

1 2

3 4

You may get the code from my GitHub Gist here.

I hope this helps.

Source Code

11

https://gist.github.com/adgsenpai/4d8b24def8ffdcf82cc1cf43d8d89808

	Relations
	What is a relation?
	Some specific relations
	Properties of relations
	Reflexive
	Irreflexive
	Symmetric
	Antisymmetric
	Transitive
	Trichotomy
	Equivalence relations
	Order relations

	Computer Program
	Python Class

